Smoothing SQP algorithm for semismooth equations with box constraints
Changyu Wang (),
Qian Liu () and
Cheng Ma ()
Computational Optimization and Applications, 2013, vol. 55, issue 2, 399-425
Abstract:
In this paper, in order to solve semismooth equations with box constraints, we present a class of smoothing SQP algorithms using the regularized-smooth techniques. The main difference of our algorithm from some related literature is that the correspondent objective function arising from the equation system is not required to be continuously differentiable. Under the appropriate conditions, we prove the global convergence theorem, in other words, any accumulation point of the iteration point sequence generated by the proposed algorithm is a KKT point of the corresponding optimization problem with box constraints. Particularly, if an accumulation point of the iteration sequence is a vertex of box constraints and additionally, its corresponding KKT multipliers satisfy strictly complementary conditions, the gradient projection of the iteration sequence finitely terminates at this vertex. Furthermore, under local error bound conditions which are weaker than BD-regular conditions, we show that the proposed algorithm converges superlinearly. Finally, the promising numerical results demonstrate that the proposed smoothing SQP algorithm is an effective method. Copyright Springer Science+Business Media New York 2013
Keywords: Semismooth equations with box constraints; SQP algorithm; Global convergence; Finite termination; Superlinear convergence rate (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9524-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:55:y:2013:i:2:p:399-425
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-012-9524-5
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().