EconPapers    
Economics at your fingertips  
 

A novel differential evolution algorithm for binary optimization

Mina Husseinzadeh Kashan (), Ali Husseinzadeh Kashan () and Nasim Nahavandi ()

Computational Optimization and Applications, 2013, vol. 55, issue 2, 513 pages

Abstract: Differential evolution (DE) is one of the most powerful stochastic search methods which was introduced originally for continuous optimization. In this sense, it is of low efficiency in dealing with discrete problems. In this paper we try to cover this deficiency through introducing a new version of DE algorithm, particularly designed for binary optimization. It is well-known that in its original form, DE maintains a differential mutation, a crossover and a selection operator for optimizing non-linear continuous functions. Therefore, developing the new binary version of DE algorithm, calls for introducing operators having the major characteristics of the original ones and being respondent to the structure of binary optimization problems. Using a measure of dissimilarity between binary vectors, we propose a differential mutation operator that works in continuous space while its consequence is used in the construction of the complete solution in binary space. This approach essentially enables us to utilize the structural knowledge of the problem through heuristic procedures, during the construction of the new solution. To verify effectiveness of our approach, we choose the uncapacitated facility location problem (UFLP)—one of the most frequently encountered binary optimization problems—and solve benchmark suites collected from OR-Library. Extensive computational experiments are carried out to find out the behavior of our algorithm under various setting of the control parameters and also to measure how well it competes with other state of the art binary optimization algorithms. Beside UFLP, we also investigate the suitably of our approach for optimizing numerical functions. We select a number of well-known functions on which we compare the performance of our approach with different binary optimization algorithms. Results testify that our approach is very efficient and can be regarded as a promising method for solving wide class of binary optimization problems. Copyright Springer Science+Business Media New York 2013

Keywords: Binary optimization; Uncapacitated facility location problem; Numerical function optimization; Differential evolution; Dissimilarity measure of binary vectors (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-012-9521-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:55:y:2013:i:2:p:481-513

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-012-9521-8

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:55:y:2013:i:2:p:481-513