EconPapers    
Economics at your fingertips  
 

Stable local volatility function calibration using spline kernel

Thomas Coleman (), Yuying Li () and Cheng Wang ()

Computational Optimization and Applications, 2013, vol. 55, issue 3, 675-702

Abstract: We propose an optimization formulation using the l 1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances calibration accuracy with model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a spline kernel function and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates. Copyright Springer Science+Business Media New York 2013

Keywords: Local volatility function; Spline kernel; Calibration; L 1 optimization; Trust region method; Option pricing (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9543-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:55:y:2013:i:3:p:675-702

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-013-9543-x

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:55:y:2013:i:3:p:675-702