EconPapers    
Economics at your fingertips  
 

A simplex-based numerical framework for simple and efficient robust design optimization

Pietro Congedo (), Jeroen Witteveen () and Gianluca Iaccarino ()

Computational Optimization and Applications, 2013, vol. 56, issue 1, 251 pages

Abstract: The Simplex Stochastic Collocation (SSC) method is an efficient algorithm for uncertainty quantification (UQ) in computational problems with random inputs. In this work, we show how its formulation based on simplex tessellation, high degree polynomial interpolation and adaptive refinements can be employed in problems involving optimization under uncertainty. The optimization approach used is the Nelder-Mead algorithm (NM), also known as Downhill Simplex Method. The resulting SSC/NM method, called Simplex 2 , is based on (i) a coupled stopping criterion and (ii) the use of an high-degree polynomial interpolation in the optimization space for accelerating some NM operators. Numerical results show that this method is very efficient for mono-objective optimization and minimizes the global number of deterministic evaluations to determine a robust design. This method is applied to some analytical test cases and a realistic problem of robust optimization of a multi-component airfoil. Copyright Springer Science+Business Media New York 2013

Keywords: Nelder-Mead method; Simplex stochastic collocation method; Robust optimization; Uncertainty quantification (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9569-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:56:y:2013:i:1:p:231-251

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-013-9569-0

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:56:y:2013:i:1:p:231-251