A generative model and a generalized trust region Newton method for noise reduction
Seppo Pulkkinen (),
Marko Mäkelä () and
Napsu Karmitsa ()
Computational Optimization and Applications, 2014, vol. 57, issue 1, 129-165
Abstract:
In practical applications related to, for instance, machine learning, data mining and pattern recognition, one is commonly dealing with noisy data lying near some low-dimensional manifold. A well-established tool for extracting the intrinsically low-dimensional structure from such data is principal component analysis (PCA). Due to the inherent limitations of this linear method, its extensions to extraction of nonlinear structures have attracted increasing research interest in recent years. Assuming a generative model for noisy data, we develop a probabilistic approach for separating the data-generating nonlinear functions from noise. We demonstrate that ridges of the marginal density induced by the model are viable estimators for the generating functions. For projecting a given point onto a ridge of its estimated marginal density, we develop a generalized trust region Newton method and prove its convergence to a ridge point. Accuracy of the model and computational efficiency of the projection method are assessed via numerical experiments where we utilize Gaussian kernels for nonparametric estimation of the underlying densities of the test datasets. Copyright Springer Science+Business Media New York 2014
Keywords: Principal manifold; Noise reduction; Generative model; Ridge; Density estimation; Trust region; Newton method (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9581-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:57:y:2014:i:1:p:129-165
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-013-9581-4
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().