EconPapers    
Economics at your fingertips  
 

Properties and methods for finding the best rank-one approximation to higher-order tensors

Yuning Yang (), Qingzhi Yang () and Liqun Qi ()

Computational Optimization and Applications, 2014, vol. 58, issue 1, 105-132

Abstract: The problem of finding the best rank-one approximation to higher-order tensors has extensive engineering and statistical applications. It is well-known that this problem is equivalent to a homogeneous polynomial optimization problem. In this paper, we study theoretical results and numerical methods of this problem, particularly focusing on the 4-th order symmetric tensor case. First, we reformulate the polynomial optimization problem to a matrix programming, and show the equivalence between these two problems. Then, we prove that there is no duality gap between the reformulation and its Lagrangian dual problem. Concerning the approaches to deal with the problem, we propose two relaxed models. The first one is a convex quadratic matrix optimization problem regularized by the nuclear norm, while the second one is a quadratic matrix programming regularized by a truncated nuclear norm, which is a D.C. function and therefore is nonconvex. To overcome the difficulty of solving this nonconvex problem, we approximate the nonconvex penalty by a convex term. We propose to use the proximal augmented Lagrangian method to solve these two relaxed models. In order to obtain a global solution, we propose an alternating least eigenvalue method after solving the relaxed models and prove its convergence. Numerical results presented in the last demonstrate, especially for nonpositive tensors, the effectiveness and efficiency of our proposed methods. Copyright Springer Science+Business Media New York 2014

Keywords: Best rank-one approximation; Z-eigenvalue; Nonnegative tensors; Strong duality; Nuclear norm regularization; Algorithm (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9617-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:58:y:2014:i:1:p:105-132

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-013-9617-9

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:coopap:v:58:y:2014:i:1:p:105-132