EconPapers    
Economics at your fingertips  
 

A sparsity preserving stochastic gradient methods for sparse regression

Qihang Lin, Xi Chen and Javier Peña ()

Computational Optimization and Applications, 2014, vol. 58, issue 2, 455-482

Abstract: We propose a new stochastic first-order algorithm for solving sparse regression problems. In each iteration, our algorithm utilizes a stochastic oracle of the subgradient of the objective function. Our algorithm is based on a stochastic version of the estimate sequence technique introduced by Nesterov (Introductory lectures on convex optimization: a basic course, Kluwer, Amsterdam, 2003 ). The convergence rate of our algorithm depends continuously on the noise level of the gradient. In particular, in the limiting case of noiseless gradient, the convergence rate of our algorithm is the same as that of optimal deterministic gradient algorithms. We also establish some large deviation properties of our algorithm. Unlike existing stochastic gradient methods with optimal convergence rates, our algorithm has the advantage of readily enforcing sparsity at all iterations, which is a critical property for applications of sparse regressions. Copyright Springer Science+Business Media New York 2014

Keywords: Sparse regression; Stochastic gradient; First-order methods (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9633-9 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:58:y:2014:i:2:p:455-482

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-013-9633-9

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:58:y:2014:i:2:p:455-482