Robust registration of point sets using iteratively reweighted least squares
Per Bergström () and
Ove Edlund ()
Computational Optimization and Applications, 2014, vol. 58, issue 3, 543-561
Abstract:
Registration of point sets is done by finding a rotation and translation that produces a best fit between a set of data points and a set of model points. We use robust M-estimation techniques to limit the influence of outliers, more specifically a modified version of the iterative closest point algorithm where we use iteratively re-weighed least squares to incorporate the robustness. We prove convergence with respect to the value of the objective function for this algorithm. A comparison is also done of different criterion functions to figure out their abilities to do appropriate point set fits, when the sets of data points contains outliers. The robust methods prove to be superior to least squares minimization in this setting. Copyright Springer Science+Business Media New York 2014
Keywords: Convergence; ICP; IRLS; M-estimation; Registration; Robust (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-014-9643-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:58:y:2014:i:3:p:543-561
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-014-9643-2
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().