A smoothing augmented Lagrangian method for solving simple bilevel programs
Mengwei Xu () and
Jane Ye ()
Computational Optimization and Applications, 2014, vol. 59, issue 1, 353-377
Abstract:
In this paper, we design a numerical algorithm for solving a simple bilevel program where the lower level program is a nonconvex minimization problem with a convex set constraint. We propose to solve a combined problem where the first order condition and the value function are both present in the constraints. Since the value function is in general nonsmooth, the combined problem is in general a nonsmooth and nonconvex optimization problem. We propose a smoothing augmented Lagrangian method for solving a general class of nonsmooth and nonconvex constrained optimization problems. We show that, if the sequence of penalty parameters is bounded, then any accumulation point is a Karush-Kuch-Tucker (KKT) point of the nonsmooth optimization problem. The smoothing augmented Lagrangian method is used to solve the combined problem. Numerical experiments show that the algorithm is efficient for solving the simple bilevel program. Copyright Springer Science+Business Media New York 2014
Keywords: Bilevel program; Value function; Smoothing method; Augmented Lagrangian method; Partial calmness; Principal-agent problem (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9627-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:59:y:2014:i:1:p:353-377
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-013-9627-7
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().