Efficient parallel solution of large-scale nonlinear dynamic optimization problems
Daniel Word,
Jia Kang,
Johan Akesson and
Carl Laird ()
Computational Optimization and Applications, 2014, vol. 59, issue 3, 667-688
Abstract:
This paper presents a decomposition strategy applicable to DAE constrained optimization problems. A common solution method for such problems is to apply a direct transcription method and solve the resulting nonlinear program using an interior-point algorithm. For this approach, the time to solve the linearized KKT system at each iteration typically dominates the total solution time. In our proposed method, we exploit the structure of the KKT system resulting from a direct collocation scheme for approximating the DAE constraints in order to compute the necessary linear algebra operations on multiple processors. This approach is applied to find the optimal control profile of a combined cycle power plant with promising results on both distributed memory and shared memory computing architectures with speedups of over 50 times possible. Copyright Springer Science+Business Media New York 2014
Keywords: Dynamic optimization; Parallel computing; Collocation; Schur-complement decomposition; Parallel nonlinear optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-014-9651-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:59:y:2014:i:3:p:667-688
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-014-9651-2
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().