EconPapers    
Economics at your fingertips  
 

An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization

Qihang Lin () and Lin Xiao ()

Computational Optimization and Applications, 2015, vol. 60, issue 3, 633-674

Abstract: We consider optimization problems with an objective function that is the sum of two convex terms: one is smooth and given by a black-box oracle, and the other is general but with a simple, known structure. We first present an accelerated proximal gradient (APG) method for problems where the smooth part of the objective function is also strongly convex. This method incorporates an efficient line-search procedure, and achieves the optimal iteration complexity for such composite optimization problems. In case the strong convexity parameter is unknown, we also develop an adaptive scheme that can automatically estimate it on the fly, at the cost of a slightly worse iteration complexity. Then we focus on the special case of solving the $$\ell _1$$ ℓ 1 -regularized least-squares problem in the high-dimensional setting. In such a context, the smooth part of the objective (least-squares) is not strongly convex over the entire domain. Nevertheless, we can exploit its restricted strong convexity over sparse vectors using the adaptive APG method combined with a homotopy continuation scheme. We show that such a combination leads to a global geometric rate of convergence, and the overall iteration complexity has a weaker dependency on the restricted condition number than previous work. Copyright Springer Science+Business Media New York 2015

Keywords: Proximal gradient method; Sparse optimization; L1-regularized least-squares; Homotopy continuation; First-order method (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-014-9694-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:60:y:2015:i:3:p:633-674

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-014-9694-4

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:60:y:2015:i:3:p:633-674