EconPapers    
Economics at your fingertips  
 

An incremental clustering algorithm based on hyperbolic smoothing

A. Bagirov (), B. Ordin, G. Ozturk and A. Xavier

Computational Optimization and Applications, 2015, vol. 61, issue 1, 219-241

Abstract: Clustering is an important problem in data mining. It can be formulated as a nonsmooth, nonconvex optimization problem. For the most global optimization techniques this problem is challenging even in medium size data sets. In this paper, we propose an approach that allows one to apply local methods of smooth optimization to solve the clustering problems. We apply an incremental approach to generate starting points for cluster centers which enables us to deal with nonconvexity of the problem. The hyperbolic smoothing technique is applied to handle nonsmoothness of the clustering problems and to make it possible application of smooth optimization algorithms to solve them. Results of numerical experiments with eleven real-world data sets and the comparison with state-of-the-art incremental clustering algorithms demonstrate that the smooth optimization algorithms in combination with the incremental approach are powerful alternative to existing clustering algorithms. Copyright Springer Science+Business Media New York 2015

Keywords: Nonsmooth optimization; Cluster analysis; Smoothing techniques; Nonlinear programming; 65K05; 90C25 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-014-9711-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:61:y:2015:i:1:p:219-241

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-014-9711-7

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:61:y:2015:i:1:p:219-241