Moreau–Yosida regularization in shape optimization with geometric constraints
Moritz Keuthen () and
Michael Ulbrich
Computational Optimization and Applications, 2015, vol. 62, issue 1, 216 pages
Abstract:
In the context of shape optimization with geometric constraints we employ the method of mappings (perturbation of identity) to obtain an optimal control problem with a nonlinear state equation on a fixed reference domain. The Lagrange multiplier associated with the geometric shape constraint has a low regularity (similar to state constrained problems), which we circumvent by penalization and a continuation scheme. We employ a Moreau–Yosida-type regularization and assume a second-order condition to hold. The regularized problems can then be solved with a semismooth Newton method and we study the properties of the regularized solutions and the rate of convergence towards a solution of the original problem. A model for the value function in the spirit of Hintermüller and Kunisch (SIAM J Control Optim 45(4): 1198–1221, 2006 ) is introduced and used in an update strategy for the regularization parameter. The theoretical findings are supported by numerical tests. Copyright Springer Science+Business Media New York 2015
Keywords: Shape optimization; Moreau–Yosida regularization; Method of mappings; Semismooth newton; Geometric constraints (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-014-9661-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:62:y:2015:i:1:p:181-216
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-014-9661-0
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().