EconPapers    
Economics at your fingertips  
 

Inexact accelerated augmented Lagrangian methods

Myeongmin Kang (), Myungjoo Kang () and Miyoun Jung ()

Computational Optimization and Applications, 2015, vol. 62, issue 2, 373-404

Abstract: The augmented Lagrangian method (ALM) is a popular method for solving linearly constrained convex minimization problems, and it has been used in many applications such as compressive sensing or image processing. Recently, accelerated versions of the augmented Lagrangian method (AALM) have been developed, and they assume that the subproblem can be exactly solved. However, the subproblem of the augmented Lagrangian method in general does not have a closed-form solution. In this paper, we introduce an inexact version of an accelerated augmented Lagrangian method (I-AALM), with an implementable inexact stopping condition for the subproblem. It is also proved that the convergence rate of our method remains the same as the accelerated ALM, which is $${{\mathcal {O}}}(\frac{1}{k^2})$$ O ( 1 k 2 ) with an iteration number $$k$$ k . In a similar manner, we propose an inexact accelerated alternating direction method of multiplier (I-AADMM), which is an inexact version of an accelerated ADMM. Numerical applications to compressive sensing or image inpainting are also presented to validate the effectiveness of the proposed iterative algorithms. Copyright Springer Science+Business Media New York 2015

Keywords: Augmented Lagrangian method; Alternating direction method of multipliers; Inexactness; Acceleration; Compressive sensing; Image inpainting (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-015-9742-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:62:y:2015:i:2:p:373-404

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-015-9742-8

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:62:y:2015:i:2:p:373-404