A review of distances for the Mallows and Generalized Mallows estimation of distribution algorithms
Josu Ceberio (),
Ekhine Irurozki (),
Alexander Mendiburu () and
Jose Lozano ()
Computational Optimization and Applications, 2015, vol. 62, issue 2, 545-564
Abstract:
The Mallows (MM) and the Generalized Mallows (GMM) probability models have demonstrated their validity in the framework of Estimation of distribution algorithms (EDAs) for solving permutation-based combinatorial optimisation problems. Recent works, however, have suggested that the performance of these algorithms strongly relies on the distance used under the model. The goal of this paper is to review three common distances for permutations, Kendall’s- $$\tau $$ τ , Cayley and Ulam, and compare their performance under MM and GMM EDAs. Moreover, with the aim of predicting the most suitable distance for solving any given permutation problem, we focus our attention on the relation between these distances and the neighbourhood systems in the field of local search optimisation. In this sense, we demonstrate that the performance of the MM and GMM EDAs is strongly correlated with that of multistart local search algorithms when using related neighbourhoods. Furthermore, by means of fitness landscape analysis techniques, we show that the suitability of a distance to solve a problem is clearly characterised by the generation of high smoothness fitness landscapes. Copyright Springer Science+Business Media New York 2015
Keywords: Distances; Mallows and Generalized Mallows models; Estimation of distribution algorithms; Permutations-based Problems; Neighbourhood; Landscape (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-015-9740-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:62:y:2015:i:2:p:545-564
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-015-9740-x
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().