EconPapers    
Economics at your fingertips  
 

An improved test set approach to nonlinear integer problems with applications to engineering design

J. Gago-Vargas (), I. Hartillo (), J. Puerto () and J. Ucha ()

Computational Optimization and Applications, 2015, vol. 62, issue 2, 565-588

Abstract: Many problems in engineering design involve the use of nonlinearities and some integer variables. Methods based on test sets have been proposed to solve some particular problems with integer variables, but they have not been frequently applied because of computation costs. The walk-back procedure based on a test set gives an exact method to obtain an optimal point of an integer programming problem with linear and nonlinear constraints, but the calculation of this test set and the identification of an optimal solution using the test set directions are usually computationally intensive. In problems for which obtaining the test set is reasonably fast, we show how the effectiveness can still be substantially improved. This methodology is presented in its full generality and illustrated on two specific problems: (1) minimizing cost in the problem of scheduling jobs on parallel machines given restrictions on demands and capacity, and (2) minimizing cost in the series parallel redundancy allocation problem, given a target reliability. Our computational results are promising and suggest the applicability of this approach to deal with other problems with similar characteristics or to combine it with mainstream solvers to certify optimality. Copyright Springer Science+Business Media New York 2015

Keywords: Non-linear integer programming; Test set; Gröbner basis; Chance constrained programming (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-015-9739-3 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:62:y:2015:i:2:p:565-588

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-015-9739-3

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:62:y:2015:i:2:p:565-588