Using multiobjective optimization to map the entropy region
László Csirmaz ()
Computational Optimization and Applications, 2016, vol. 63, issue 1, 45-67
Abstract:
Mapping the structure of the entropy region of at least four jointly distributed random variables is an important open problem. Even partial knowledge about this region has far reaching consequences in other areas in mathematics, like information theory, cryptography, probability theory and combinatorics. Presently, the only known method of exploring the entropy region is, or equivalent to, the one of Zhang and Yeung from 1998. Using some non-trivial properties of the entropy function, their method is transformed to solving high dimensional linear multiobjective optimization problems. Benson’s outer approximation algorithm is a fundamental tool for solving such optimization problems. An improved version of Benson’s algorithm is presented, which requires solving one scalar linear program in each iteration rather than two or three as in previous versions. During the algorithm design, special care is taken for numerical stability. The implemented algorithm is used to verify previous statements about the entropy region, as well as to explore it further. Experimental results demonstrate the viability of the improved Benson’s algorithm for determining the extremal set of medium-sized numerically ill-posed optimization problems. With larger problem sizes, two limitations of Benson’s algorithm is observed: the inefficiency of the scalar LP solver, and the unexpectedly large number of intermediate vertices. Copyright Springer Science+Business Media New York 2016
Keywords: Multiobjective programming; Effective solutions; Entropy region; Benson’s algorithm; Entropy inequality; 90C60; 90C05; 94A17; 90C29 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-015-9760-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:63:y:2016:i:1:p:45-67
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-015-9760-6
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().