Theoretical and computational results about optimality-based domain reductions
Alberto Caprara,
Marco Locatelli () and
Michele Monaci ()
Additional contact information
Alberto Caprara: DEI “Guglielmo Marconi”, Università di Bologna
Marco Locatelli: Università di Parma
Michele Monaci: DEI, Università di Padova
Computational Optimization and Applications, 2016, vol. 64, issue 2, No 8, 513-533
Abstract:
Abstract In this paper we discuss optimality-based domain reductions for Global Optimization problems both from the theoretical and from the computational point of view. When applying an optimality-based domain reduction we can easily define a lower limit for the reduction which can be attained, but we can hardly guarantee that such limit is reached. Here, we theoretically prove that, for a nontrivial class of problems, appropriate strategies exist that are always able to reach this lower limit. On the other hand, we will also show that the same strategies lose this property as soon as we slightly enlarge the class of problems. Next, we perform computational experiments with a standard B&B approach applied to Linear Multiplicative Programming problems. We aim at establishing a good trade off between the quality of the domain reduction (the higher the quality, the lower the number of nodes in the B&B tree), and the computational cost of the domain reduction, and, thus, the effort per node of the B&B tree.
Keywords: Global optimization; Domain reduction; Branch-and-bound (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-015-9818-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:64:y:2016:i:2:d:10.1007_s10589-015-9818-5
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-015-9818-5
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().