Alternating direction method of multipliers for penalized zero-variance discriminant analysis
Brendan P. W. Ames () and
Mingyi Hong ()
Additional contact information
Brendan P. W. Ames: The University of Alabama
Mingyi Hong: Iowa State University
Computational Optimization and Applications, 2016, vol. 64, issue 3, No 5, 725-754
Abstract:
Abstract We consider the task of classification in the high dimensional setting where the number of features of the given data is significantly greater than the number of observations. To accomplish this task, we propose a heuristic, called sparse zero-variance discriminant analysis, for simultaneously performing linear discriminant analysis and feature selection on high dimensional data. This method combines classical zero-variance discriminant analysis, where discriminant vectors are identified in the null space of the sample within-class covariance matrix, with penalization applied to induce sparse structures in the resulting vectors. To approximately solve the resulting nonconvex problem, we develop a simple algorithm based on the alternating direction method of multipliers. Further, we show that this algorithm is applicable to a larger class of penalized generalized eigenvalue problems, including a particular relaxation of the sparse principal component analysis problem. Finally, we establish theoretical guarantees for convergence of our algorithm to stationary points of the original nonconvex problem, and empirically demonstrate the effectiveness of our heuristic for classifying simulated data and data drawn from applications in time-series classification.
Keywords: Linear discriminant analysis; Alternating direction method of multipliers; Nonconvex optimization; Dimension reduction; Feature selection; Classification (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-016-9828-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:64:y:2016:i:3:d:10.1007_s10589-016-9828-y
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-016-9828-y
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().