Quasi-Newton smoothed functional algorithms for unconstrained and constrained simulation optimization
K. Lakshmanan () and
Shalabh Bhatnagar ()
Additional contact information
K. Lakshmanan: Amrita School of Engineering
Shalabh Bhatnagar: Indian Institute of Science
Computational Optimization and Applications, 2017, vol. 66, issue 3, No 6, 533-556
Abstract:
Abstract We propose a multi-time scale quasi-Newton based smoothed functional (QN-SF) algorithm for stochastic optimization both with and without inequality constraints. The algorithm combines the smoothed functional (SF) scheme for estimating the gradient with the quasi-Newton method to solve the optimization problem. Newton algorithms typically update the Hessian at each instant and subsequently (a) project them to the space of positive definite and symmetric matrices, and (b) invert the projected Hessian. The latter operation is computationally expensive. In order to save computational effort, we propose in this paper a quasi-Newton SF (QN-SF) algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule. In Bhatnagar (ACM TModel Comput S. 18(1): 27–62, 2007), a Jacobi variant of Newton SF (JN-SF) was proposed and implemented to save computational effort. We compare our QN-SF algorithm with gradient SF (G-SF) and JN-SF algorithms on two different problems – first on a simple stochastic function minimization problem and the other on a problem of optimal routing in a queueing network. We observe from the experiments that the QN-SF algorithm performs significantly better than both G-SF and JN-SF algorithms on both the problem settings. Next we extend the QN-SF algorithm to the case of constrained optimization. In this case too, the QN-SF algorithm performs much better than the JN-SF algorithm. Finally we present the proof of convergence for the QN-SF algorithm in both unconstrained and constrained settings.
Keywords: Simulation; Stochastic optimization; Stochastic approximation algorithms; Smoothed functional algorithm; Quasi-Newton methods; Constrained optimization; Multi-stage queueing networks; 62L20 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-016-9875-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:66:y:2017:i:3:d:10.1007_s10589-016-9875-4
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-016-9875-4
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().