Error estimates for integral constraint regularization of state-constrained elliptic control problems
B. Jadamba (),
A. Khan () and
M. Sama ()
Additional contact information
B. Jadamba: Rochester Institute of Technology
A. Khan: Rochester Institute of Technology
M. Sama: E.T.S.I.I. Universidad Nacional de Educación a Distancia
Computational Optimization and Applications, 2017, vol. 67, issue 1, No 2, 39-71
Abstract:
Abstract In this paper, we study new aspects of the integral contraint regularization of state-constrained elliptic control problems (Jadamba et al. in Syst Control Lett 61(6):707–713, 2012). Besides giving new results on the regularity and the convergence of the regularized controls and associated Lagrange multipliers, the main objective of this paper is to give abstract error estimates for the regularization error. We also consider a discretization of the regularized problems and derive numerical estimates which are uniform with respect to the regularization parameter and the discretization parameter. As an application of these results, we prove that this discretization is indeed a full discretization of the original problem defined in terms of a problem with finitely many integral constraints. Detailed numerical results justifying the theoretical findings as well as a comparison of our work with the existing literature is also given.
Keywords: Elliptic optimal control problems; Pointwise state contraints; Integral constraint regularization; Error estimates (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-016-9885-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:67:y:2017:i:1:d:10.1007_s10589-016-9885-2
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-016-9885-2
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().