Subspace-stabilized sequential quadratic programming
A. F. Izmailov () and
E. I. Uskov ()
Additional contact information
A. F. Izmailov: Lomonosov Moscow State University, MSU
E. I. Uskov: Derzhavin Tambov State University, TSU
Computational Optimization and Applications, 2017, vol. 67, issue 1, No 5, 129-154
Abstract:
Abstract The stabilized sequential quadratic programming (SQP) method has nice local convergence properties: it possesses local superlinear convergence under very mild assumptions not including any constraint qualifications. However, any attempts to globalize convergence of this method indispensably face some principal difficulties concerned with intrinsic deficiencies of the steps produced by it when relatively far from solutions; specifically, it has a tendency to produce long sequences of short steps before entering the region where its superlinear convergence shows up. In this paper, we propose a modification of the stabilized SQP method, possessing better “semi-local” behavior, and hence, more suitable for the development of practical realizations. The key features of the new method are identification of the so-called degeneracy subspace and dual stabilization along this subspace only; thus the name “subspace-stabilized SQP”. We consider two versions of this method, their local convergence properties, as well as a practical procedure for approximation of the degeneracy subspace. Even though we do not consider here any specific algorithms with theoretically justified global convergence properties, subspace-stabilized SQP can be a relevant substitute for the stabilized SQP in such algorithms using the latter at the “local phase”. Some numerical results demonstrate that stabilization along the degeneracy subspace is indeed crucially important for success of dual stabilization methods.
Keywords: Sequential quadratic programming; Degenerate solution; Noncritical Lagrange multiplier; Dual stabilization; Superlinear convergence; Global convergence (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-016-9890-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:67:y:2017:i:1:d:10.1007_s10589-016-9890-5
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-016-9890-5
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().