EconPapers    
Economics at your fingertips  
 

An alternating direction and projection algorithm for structure-enforced matrix factorization

Lijun Xu (), Bo Yu () and Yin Zhang ()
Additional contact information
Lijun Xu: Dalian University of Technology
Bo Yu: Dalian University of Technology
Yin Zhang: Rice University

Computational Optimization and Applications, 2017, vol. 68, issue 2, No 6, 333-362

Abstract: Abstract Structure-enforced matrix factorization (SeMF) represents a large class of mathematical models appearing in various forms of principal component analysis, sparse coding, dictionary learning and other machine learning techniques useful in many applications including neuroscience and signal processing. In this paper, we present a unified algorithm framework, based on the classic alternating direction method of multipliers (ADMM), for solving a wide range of SeMF problems whose constraint sets permit low-complexity projections. We propose a strategy to adaptively adjust the penalty parameters which is the key to achieving good performance for ADMM. We conduct extensive numerical experiments to compare the proposed algorithm with a number of state-of-the-art special-purpose algorithms on test problems including dictionary learning for sparse representation and sparse nonnegative matrix factorization. Results show that our unified SeMF algorithm can solve different types of factorization problems as reliably and as efficiently as special-purpose algorithms. In particular, our SeMF algorithm provides the ability to explicitly enforce various combinatorial sparsity patterns that, to our knowledge, has not been considered in existing approaches.

Keywords: Matrix factorization; Alternating direction method; Projection; Adaptive penalty parameter; Sparse optimization; Dictionary learning (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-017-9913-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:68:y:2017:i:2:d:10.1007_s10589-017-9913-x

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-017-9913-x

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:68:y:2017:i:2:d:10.1007_s10589-017-9913-x