On the convergence of alternating minimization methods in variational PGD
A. El Hamidi (),
H. Ossman () and
M. Jazar ()
Additional contact information
A. El Hamidi: University of La Rochelle
H. Ossman: University of La Rochelle
M. Jazar: Lebanese University
Computational Optimization and Applications, 2017, vol. 68, issue 2, No 10, 455-472
Abstract:
Abstract The approximation of solutions to partial differential equations by tensorial separated representations is one of the most efficient numerical treatment of high dimensional problems. The key step of such methods is the computation of an optimal low-rank tensor to enrich the obtained iterative tensorial approximation. In variational problems, this step can be carried out by alternating minimization (AM) technics, but the convergence of such methods presents a real challenge. In the present work, the convergence of rank-one AM algorithms for a class of variational linear elliptic equations is studied. More precisely, we show that rank-one AM-sequences are in general bounded in the ambient Hilbert tensor space and are compact if a uniform non-orthogonality condition between iterates and the reaction term is fulfilled. In particular, if a rank-one AM-sequence is weakly convergent then it converges strongly and the common limit is a solution of the rank-one optimization problem.
Keywords: Proper generalized decomposition (PGD); Alternate minimization; Tensor Hilbert spaces; 65K10; 49K30 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-017-9920-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:68:y:2017:i:2:d:10.1007_s10589-017-9920-y
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-017-9920-y
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().