EconPapers    
Economics at your fingertips  
 

On exact linesearch quasi-Newton methods for minimizing a quadratic function

Anders Forsgren () and Tove Odland ()
Additional contact information
Anders Forsgren: KTH Royal Institute of Technology
Tove Odland: KTH Royal Institute of Technology

Computational Optimization and Applications, 2018, vol. 69, issue 1, No 9, 225-241

Abstract: Abstract This paper concerns exact linesearch quasi-Newton methods for minimizing a quadratic function whose Hessian is positive definite. We show that by interpreting the method of conjugate gradients as a particular exact linesearch quasi-Newton method, necessary and sufficient conditions can be given for an exact linesearch quasi-Newton method to generate a search direction which is parallel to that of the method of conjugate gradients. We also analyze update matrices and give a complete description of the rank-one update matrices that give search direction parallel to those of the method of conjugate gradients. In particular, we characterize the family of such symmetric rank-one update matrices that preserve positive definiteness of the quasi-Newton matrix. This is in contrast to the classical symmetric-rank-one update where there is no freedom in choosing the matrix, and positive definiteness cannot be preserved. The analysis is extended to search directions that are parallel to those of the preconditioned method of conjugate gradients in a straightforward manner.

Keywords: Method of conjugate gradients; Quasi-Newton method; Unconstrained quadratic program; Exact linesearch method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-017-9940-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:69:y:2018:i:1:d:10.1007_s10589-017-9940-7

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-017-9940-7

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:69:y:2018:i:1:d:10.1007_s10589-017-9940-7