EconPapers    
Economics at your fingertips  
 

Adaptive optimal control of Signorini’s problem

Andreas Rademacher () and Korinna Rosin ()
Additional contact information
Andreas Rademacher: Technische Universität Dortmund
Korinna Rosin: Technische Universität Dortmund

Computational Optimization and Applications, 2018, vol. 70, issue 2, No 8, 569 pages

Abstract: Abstract In this article, we present a-posteriori error estimations in context of optimal control of contact problems; in particular of Signorini’s problem. Due to the contact side-condition, the solution operator of the underlying variational inequality is not differentiable, yet we want to apply Newton’s method. Therefore, the non-smooth problem is regularized by penalization and afterwards discretized by finite elements. We derive optimality systems for the regularized formulation in the continuous as well as in the discrete case. This is done explicitly for Signorini’s contact problem, which covers linear elasticity and linearized surface contact conditions. The latter creates the need for treating trace-operations carefully, especially in contrast to obstacle contact conditions, which exert in the domain. Based on the dual weighted residual method and these optimality systems, we deduce error representations for the regularization, discretization and numerical errors. Those representations are further developed into error estimators. The resulting error estimator for regularization error is defined only in the contact area. Therefore its computational cost is especially low for Signorini’s contact problem. Finally, we utilize the estimators in an adaptive refinement strategy balancing regularization and discretization errors. Numerical results substantiate the theoretical findings. We present different examples concerning Signorini’s problem in two and three dimensions.

Keywords: Adaptive finite elements; Optimization; Signorini’s problem; Regularization error; Dual weighted residual; A-posteriori error estimation (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-018-9982-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:70:y:2018:i:2:d:10.1007_s10589-018-9982-5

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-018-9982-5

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:70:y:2018:i:2:d:10.1007_s10589-018-9982-5