The generalized proximal point algorithm with step size 2 is not necessarily convergent
Min Tao () and
Xiaoming Yuan ()
Additional contact information
Min Tao: Nanjing University
Xiaoming Yuan: The University of Hong Kong
Computational Optimization and Applications, 2018, vol. 70, issue 3, No 7, 827-839
Abstract:
Abstract The proximal point algorithm (PPA) is a fundamental method in optimization and it has been well studied in the literature. Recently a generalized version of the PPA with a step size in (0, 2) has been proposed. Inheriting all important theoretical properties of the original PPA, the generalized PPA has some numerical advantages that have been well verified in the literature by various applications. A common sense is that larger step sizes are preferred whenever the convergence can be theoretically ensured; thus it is interesting to know whether or not the step size of the generalized PPA can be as large as 2. We give a negative answer to this question. Some counterexamples are constructed to illustrate the divergence of the generalized PPA with step size 2 in both generic and specific settings, including the generalized versions of the very popular augmented Lagrangian method and the alternating direction method of multipliers. A by-product of our analysis is the failure of convergence of the Peaceman–Rachford splitting method and a generalized version of the forward–backward splitting method with step size 1.5.
Keywords: Proximal point algorithm; Step size; Convergence; Augmented Lagrangian method; Alternating direction method of multipliers; Peaceman–Rachford splitting method; Forward–backward splitting method; 90C25; 90C30 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-018-9992-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:70:y:2018:i:3:d:10.1007_s10589-018-9992-3
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-018-9992-3
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().