On inexact ADMMs with relative error criteria
Jiaxin Xie ()
Additional contact information
Jiaxin Xie: Chinese Academy of Sciences
Computational Optimization and Applications, 2018, vol. 71, issue 3, No 6, 743-765
Abstract:
Abstract In this paper, we develop two inexact alternating direction methods of multipliers (ADMMs) with relative error criteria for which only a few parameters are needed to control the error tolerance. In many practical applications, the numerical performance is often improved if a larger step-length is used. Hence in this paper we also consider to seek a larger step-length to update the Lagrangian multiplier for better numerical efficiency. Specifically, if we only allow one subproblem in the classic ADMM to be solved inexactly by a certain relative error criterion, then a larger step-length can be used to update the Lagrangian multiplier. Related convergence analysis of those proposed algorithms is also established under the assumption that the solution set to the KKT system of the problem is not empty. Numerical experiments on solving total variation (TV)-based image denosing and analysis sparse recovery problems are provided to demonstrate the effectiveness of the proposed methods and the advantage of taking a larger step-length.
Keywords: Alternating direction method of multipliers (ADMM); Inexactness; Relative error criteria; Large step-length; 65K05; 90C25; 90C46 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-018-0022-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:71:y:2018:i:3:d:10.1007_s10589-018-0022-2
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-018-0022-2
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().