EconPapers    
Economics at your fingertips  
 

A convergence analysis of the method of codifferential descent

M. V. Dolgopolik ()
Additional contact information
M. V. Dolgopolik: Saint Petersburg State University

Computational Optimization and Applications, 2018, vol. 71, issue 3, No 11, 879-913

Abstract: Abstract This paper is devoted to a detailed convergence analysis of the method of codifferential descent (MCD) developed by professor V.F. Demyanov for solving a large class of nonsmooth nonconvex optimization problems. We propose a generalization of the MCD that is more suitable for applications than the original method, and that utilizes only a part of a codifferential on every iteration, which allows one to reduce the overall complexity of the method. With the use of some general results on uniformly codifferentiable functions obtained in this paper, we prove the global convergence of the generalized MCD in the infinite dimensional case. Also, we propose and analyse a quadratic regularization of the MCD, which is the first general method for minimizing a codifferentiable function over a convex set. Apart from convergence analysis, we also discuss the robustness of the MCD with respect to computational errors, possible step size rules, and a choice of parameters of the algorithm. In the end of the paper we estimate the rate of convergence of the MCD for a class of nonsmooth nonconvex functions that arise, in particular, in cluster analysis. We prove that under some general assumptions the method converges with linear rate, and it convergence quadratically, provided a certain first order sufficient optimality condition holds true.

Keywords: Nonsmooth optimization; Nonconvex optimization; Codifferential; Quasidifferential; Method of codifferential descent; 90C56; 49J52 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-018-0024-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:71:y:2018:i:3:d:10.1007_s10589-018-0024-0

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-018-0024-0

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:71:y:2018:i:3:d:10.1007_s10589-018-0024-0