Direct search based on probabilistic feasible descent for bound and linearly constrained problems
S. Gratton (),
C. W. Royer (),
L. N. Vicente () and
Zhaoyong Zhang
Additional contact information
S. Gratton: IRIT, University of Toulouse
C. W. Royer: University of Wisconsin-Madison
L. N. Vicente: University of Coimbra
Computational Optimization and Applications, 2019, vol. 72, issue 3, No 1, 525-559
Abstract:
Abstract Direct search is a methodology for derivative-free optimization whose iterations are characterized by evaluating the objective function using a set of polling directions. In deterministic direct search applied to smooth objectives, these directions must somehow conform to the geometry of the feasible region, and typically consist of positive generators of approximate tangent cones (which then renders the corresponding methods globally convergent in the linearly constrained case). One knows however from the unconstrained case that randomly generating the polling directions leads to better complexity bounds as well as to gains in numerical efficiency, and it becomes then natural to consider random generation also in the presence of constraints. In this paper, we study a class of direct-search methods based on sufficient decrease for solving smooth linearly constrained problems where the polling directions are randomly generated (in approximate tangent cones). The random polling directions must satisfy probabilistic feasible descent, a concept which reduces to probabilistic descent in the absence of constraints. Such a property is instrumental in establishing almost-sure global convergence and worst-case complexity bounds with overwhelming probability. Numerical results show that the randomization of the polling directions can be beneficial over standard approaches with deterministic guarantees, as it is suggested by the respective worst-case complexity bounds.
Keywords: Derivative-free optimization; Direct-search methods; Bound constraints; Linear constraints; Feasible descent; Probabilistic feasible descent; Worst-case complexity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-019-00062-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:72:y:2019:i:3:d:10.1007_s10589-019-00062-4
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-019-00062-4
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().