EconPapers    
Economics at your fingertips  
 

Iteratively reweighted $$\ell _1$$ ℓ 1 algorithms with extrapolation

Peiran Yu () and Ting Kei Pong ()
Additional contact information
Peiran Yu: The Hong Kong Polytechnic University
Ting Kei Pong: The Hong Kong Polytechnic University

Computational Optimization and Applications, 2019, vol. 73, issue 2, No 1, 353-386

Abstract: Abstract Iteratively reweighted $$\ell _1$$ ℓ 1 algorithm is a popular algorithm for solving a large class of optimization problems whose objective is the sum of a Lipschitz differentiable loss function and a possibly nonconvex sparsity inducing regularizer. In this paper, motivated by the success of extrapolation techniques in accelerating first-order methods, we study how widely used extrapolation techniques such as those in Auslender and Teboulle (SIAM J Optim 16:697–725, 2006), Beck and Teboulle (SIAM J Imaging Sci 2:183–202, 2009), Lan et al. (Math Program 126:1–29, 2011) and Nesterov (Math Program 140:125–161, 2013) can be incorporated to possibly accelerate the iteratively reweighted $$\ell _1$$ ℓ 1 algorithm. We consider three versions of such algorithms. For each version, we exhibit an explicitly checkable condition on the extrapolation parameters so that the sequence generated provably clusters at a stationary point of the optimization problem. We also investigate global convergence under additional Kurdyka–Łojasiewicz assumptions on certain potential functions. Our numerical experiments show that our algorithms usually outperform the general iterative shrinkage and thresholding algorithm in Gong et al. (Proc Int Conf Mach Learn 28:37–45, 2013) and an adaptation of the iteratively reweighted $$\ell _1$$ ℓ 1 algorithm in Lu (Math Program 147:277–307, 2014, Algorithm 7) with nonmonotone line-search for solving random instances of log penalty regularized least squares problems in terms of both CPU time and solution quality.

Keywords: Iteratively reweighted $$\ell _1$$ ℓ 1 algorithm; Extrapolation; Kurdyka–Łojasiewicz property (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-019-00081-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:73:y:2019:i:2:d:10.1007_s10589-019-00081-1

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-019-00081-1

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:73:y:2019:i:2:d:10.1007_s10589-019-00081-1