EconPapers    
Economics at your fingertips  
 

Maximum–norm a posteriori error estimates for an optimal control problem

Enrique Otárola (), Richard Rankin () and Abner J. Salgado ()
Additional contact information
Enrique Otárola: Universidad Técnica Federico Santa María
Richard Rankin: University of Nottingham Ningbo China
Abner J. Salgado: University of Tennessee

Computational Optimization and Applications, 2019, vol. 73, issue 3, No 11, 997-1017

Abstract: Abstract We analyze a reliable and efficient max-norm a posteriori error estimator for a control-constrained, linear–quadratic optimal control problem. The estimator yields optimal experimental rates of convergence within an adaptive loop.

Keywords: Linear–quadratic optimal control problem; Finite element methods; A posteriori error analysis; Maximum–norm; 49J20; 49M25; 65K10; 65N15; 65N30; 65N50; 65Y20 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10589-019-00090-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:73:y:2019:i:3:d:10.1007_s10589-019-00090-0

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-019-00090-0

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:73:y:2019:i:3:d:10.1007_s10589-019-00090-0