A simple convergence analysis of Bregman proximal gradient algorithm
Yi Zhou (),
Yingbin Liang () and
Lixin Shen ()
Additional contact information
Yi Zhou: Duke University
Yingbin Liang: The Ohio State University
Lixin Shen: Syracuse University
Computational Optimization and Applications, 2019, vol. 73, issue 3, No 7, 903-912
Abstract:
Abstract In this paper, we provide a simple convergence analysis of proximal gradient algorithm with Bregman distance, which provides a tighter bound than existing result. In particular, for the problem of minimizing a class of convex objective functions, we show that proximal gradient algorithm with Bregman distance can be viewed as proximal point algorithm that incorporates another Bregman distance. Consequently, the convergence result of the proximal gradient algorithm with Bregman distance follows directly from that of the proximal point algorithm with Bregman distance, and this leads to a simpler convergence analysis with a tighter convergence bound than existing ones. We further propose and analyze the backtracking line-search variant of the proximal gradient algorithm with Bregman distance.
Keywords: Proximal algorithms; Bregman distance; Convergence analysis; Line-search (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-019-00092-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:73:y:2019:i:3:d:10.1007_s10589-019-00092-y
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-019-00092-y
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().