Optimally linearizing the alternating direction method of multipliers for convex programming
Bingsheng He (),
Feng Ma () and
Xiaoming Yuan ()
Additional contact information
Bingsheng He: Southern University of Science and Technology of China
Feng Ma: High-Tech Institute of Xi’an
Xiaoming Yuan: The University of Hong Kong
Computational Optimization and Applications, 2020, vol. 75, issue 2, No 2, 388 pages
Abstract:
Abstract The alternating direction method of multipliers (ADMM) is being widely used in a variety of areas; its different variants tailored for different application scenarios have also been deeply researched in the literature. Among them, the linearized ADMM has received particularly wide attention in many areas because of its efficiency and easy implementation. To theoretically guarantee convergence of the linearized ADMM, the step size for the linearized subproblems, or the reciprocal of the linearization parameter, should be sufficiently small. On the other hand, small step sizes decelerate the convergence numerically. Hence, it is interesting to probe the optimal (largest) value of the step size that guarantees convergence of the linearized ADMM. This analysis is lacked in the literature. In this paper, we provide a rigorous mathematical analysis for finding this optimal step size of the linearized ADMM and accordingly set up the optimal version of the linearized ADMM in the convex programming context. The global convergence and worst-case convergence rate measured by the iteration complexity of the optimal version of linearized ADMM are proved as well.
Keywords: Convex programming; Alternating direction method of multipliers; Linearized; Optimal step size; Proximal regularization; Convergence rate (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-019-00152-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:75:y:2020:i:2:d:10.1007_s10589-019-00152-3
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-019-00152-3
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().