EconPapers    
Economics at your fingertips  
 

An inexact augmented Lagrangian method for computing strongly orthogonal decompositions of tensors

Shenglong Hu ()
Additional contact information
Shenglong Hu: Hangzhou Dianzi University

Computational Optimization and Applications, 2020, vol. 75, issue 3, No 6, 737 pages

Abstract: Abstract A strongly orthogonal decomposition of a tensor is a rank one tensor decomposition with the two component vectors in each mode of any two rank one tensors are either colinear or orthogonal. A strongly orthogonal decomposition with few number of rank one tensors is favorable in applications, which can be represented by a matrix-tensor multiplication with orthogonal factor matrices and a sparse tensor; and such a decomposition with the minimum number of rank one tensors is a strongly orthogonal rank decomposition. Any tensor has a strongly orthogonal rank decomposition. In this article, computing a strongly orthogonal rank decomposition is equivalently reformulated as solving an optimization problem. Different from the ill-posedness of the usual optimization reformulation for the tensor rank decomposition problem, the optimization reformulation of the strongly orthogonal rank decomposition of a tensor is well-posed. Each feasible solution of the optimization problem gives a strongly orthogonal decomposition of the tensor; and a global optimizer gives a strongly orthogonal rank decomposition, which is however difficult to compute. An inexact augmented Lagrangian method is proposed to solve the optimization problem. The augmented Lagrangian subproblem is solved by a proximal alternating minimization method, with the advantage that each subproblem has a closed formula solution and the factor matrices are kept orthogonal during the iteration. Thus, the algorithm always can return a feasible solution and thus a strongly orthogonal decomposition for any given tensor. Global convergence of this algorithm to a critical point is established without any further assumption. Extensive numerical experiments are conducted, and show that the proposed algorithm is quite promising in both efficiency and accuracy.

Keywords: Strongly orthogonal decomposition of a tensor; Augmented Lagrangian method; Strongly orthogonal rank; 15A69; 90C26 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-019-00128-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:75:y:2020:i:3:d:10.1007_s10589-019-00128-3

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-019-00128-3

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-12
Handle: RePEc:spr:coopap:v:75:y:2020:i:3:d:10.1007_s10589-019-00128-3