EconPapers    
Economics at your fingertips  
 

Towards an efficient augmented Lagrangian method for convex quadratic programming

Luís Felipe Bueno (), Gabriel Haeser () and Luiz-Rafael Santos ()
Additional contact information
Luís Felipe Bueno: Federal University of São Paulo
Gabriel Haeser: University of São Paulo
Luiz-Rafael Santos: Federal University of Santa Catarina

Computational Optimization and Applications, 2020, vol. 76, issue 3, No 7, 767-800

Abstract: Abstract Interior point methods have attracted most of the attention in the recent decades for solving large scale convex quadratic programming problems. In this paper we take a different route as we present an augmented Lagrangian method for convex quadratic programming based on recent developments for nonlinear programming. In our approach, box constraints are penalized while equality constraints are kept within the subproblems. The motivation for this approach is that Newton’s method can be efficient for minimizing a piecewise quadratic function. Moreover, since augmented Lagrangian methods do not rely on proximity to the central path, some of the inherent difficulties in interior point methods can be avoided. In addition, a good starting point can be easily exploited, which can be relevant for solving subproblems arising from sequential quadratic programming, in sensitivity analysis and in branch and bound techniques. We prove well-definedness and finite convergence of the method proposed. Numerical experiments on separable strictly convex quadratic problems formulated from the Netlib collection show that our method can be competitive with interior point methods, in particular when a good initial point is available and a second-order Lagrange multiplier update is used.

Keywords: Linear programming; Convex quadratic programming; Augmented Lagrangian; Interior point methods; 49K99; 65K05; 90C05; 90C30; 90C51 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-019-00161-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-019-00161-2

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-019-00161-2

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-019-00161-2