EconPapers    
Economics at your fingertips  
 

A regularization method for constrained nonlinear least squares

Dominique Orban () and Abel Soares Siqueira ()
Additional contact information
Dominique Orban: École Polytechnique
Abel Soares Siqueira: Federal University of Paraná

Computational Optimization and Applications, 2020, vol. 76, issue 3, No 14, 989 pages

Abstract: Abstract We propose a regularization method for nonlinear least-squares problems with equality constraints. Our approach is modeled after those of Arreckx and Orban (SIAM J Optim 28(2):1613–1639, 2018. https://doi.org/10.1137/16M1088570) and Dehghani et al. (INFOR Inf Syst Oper Res, 2019. https://doi.org/10.1080/03155986.2018.1559428) and applies a selective regularization scheme that may be viewed as a reformulation of an augmented Lagrangian. Our formulation avoids the occurrence of the operator $$A(x)^T A(x)$$A(x)TA(x), where A is the Jacobian of the nonlinear residual, which typically contributes to the density and ill conditioning of subproblems. Under boundedness of the derivatives, we establish global convergence to a KKT point or a stationary point of an infeasibility measure. If second derivatives are Lipschitz continuous and a second-order sufficient condition is satisfied, we establish superlinear convergence without requiring a constraint qualification to hold. The convergence rate is determined by a Dennis–Moré-type condition. We describe our implementation in the Julia language, which supports multiple floating-point systems. We illustrate a simple progressive scheme to obtain solutions in quadruple precision. Because our approach is similar to applying an SQP method with an exact merit function on a related problem, we show that our implementation compares favorably to IPOPT in IEEE double precision.

Keywords: Regularization; Least-squares problem; Nonlinear least-squares; Constrained nonlinear least-squares; Julia (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00201-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-020-00201-2

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-020-00201-2

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-020-00201-2