Oracle-based algorithms for binary two-stage robust optimization
Nicolas Kämmerling () and
Jannis Kurtz ()
Additional contact information
Nicolas Kämmerling: TU Dortmund University
Jannis Kurtz: RWTH Aachen University
Computational Optimization and Applications, 2020, vol. 77, issue 2, No 9, 539-569
Abstract:
Abstract In this work we study binary two-stage robust optimization problems with objective uncertainty. We present an algorithm to calculate efficiently lower bounds for the binary two-stage robust problem by solving alternately the underlying deterministic problem and an adversarial problem. For the deterministic problem any oracle can be used which returns an optimal solution for every possible scenario. We show that the latter lower bound can be implemented in a branch and bound procedure, where the branching is performed only over the first-stage decision variables. All results even hold for non-linear objective functions which are concave in the uncertain parameters. As an alternative solution method we apply a column-and-constraint generation algorithm to the binary two-stage robust problem with objective uncertainty. We test both algorithms on benchmark instances of the uncapacitated single-allocation hub-location problem and of the capital budgeting problem. Our results show that the branch and bound procedure outperforms the column-and-constraint generation algorithm.
Keywords: Two-stage robust optimization; Non-linear binary optimization; Branch and bound algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00207-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:77:y:2020:i:2:d:10.1007_s10589-020-00207-w
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-020-00207-w
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().