EconPapers    
Economics at your fingertips  
 

A new method based on the proximal bundle idea and gradient sampling technique for minimizing nonsmooth convex functions

M. Maleknia () and M. Shamsi ()
Additional contact information
M. Maleknia: Amirkabir University of Technology
M. Shamsi: Amirkabir University of Technology

Computational Optimization and Applications, 2020, vol. 77, issue 2, No 3, 379-409

Abstract: Abstract In this paper, we combine the positive aspects of the gradient sampling (GS) and bundle methods, as the most efficient methods in nonsmooth optimization, to develop a robust method for solving unconstrained nonsmooth convex optimization problems. The main aim of the proposed method is to take advantage of both GS and bundle methods, meanwhile avoiding their drawbacks. At each iteration of this method, to find an efficient descent direction, the GS technique is utilized for constructing a local polyhedral model for the objective function. If necessary, via an iterative improvement process, this initial polyhedral model is improved by some techniques inspired by the bundle and GS methods. The convergence of the method is studied, which reveals that the global convergence property of our method is independent of the number of gradient evaluations required to establish and improve the initial polyhedral models. Thus, the presented method needs much fewer gradient evaluations in comparison to the original GS method. Furthermore, by means of numerical simulations, we show that the presented method provides promising results in comparison with GS methods, especially for large scale problems. Moreover, in contrast with some bundle methods, our method is not very sensitive to the accuracy of supplied gradients.

Keywords: Nonsmooth convex optimization; Unconstrained minimization; Gradient sampling; Bundle method; 65K05; 90C26; 49M05; 49M37 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00213-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:77:y:2020:i:2:d:10.1007_s10589-020-00213-y

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-020-00213-y

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:77:y:2020:i:2:d:10.1007_s10589-020-00213-y