EconPapers    
Economics at your fingertips  
 

Global optimization via inverse distance weighting and radial basis functions

Alberto Bemporad ()
Additional contact information
Alberto Bemporad: IMT School for Advanced Studies Lucca

Computational Optimization and Applications, 2020, vol. 77, issue 2, No 10, 595 pages

Abstract: Abstract Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to function samples and minimizing an acquisition function to generate new samples. The acquisition step trades off between seeking for a new optimization vector where the surrogate is minimum (exploitation of the surrogate) and looking for regions of the feasible space that have not yet been visited and that may potentially contain better values of the objective function (exploration of the feasible space). This paper proposes a new global optimization algorithm that uses inverse distance weighting (IDW) and radial basis functions (RBF) to construct the acquisition function. Rather arbitrary constraints that are simple to evaluate can be easily taken into account. Compared to Bayesian optimization, the proposed algorithm, that we call GLIS (GLobal minimum using Inverse distance weighting and Surrogate radial basis functions), is competitive and computationally lighter, as we show in a set of benchmark global optimization and hyperparameter tuning problems. MATLAB and Python implementations of GLIS are available at http://cse.lab.imtlucca.it/~bemporad/glis .

Keywords: Global optimization; Inverse distance weighting; Bayesian optimization; Radial basis functions; Surrogate models; Derivative-free algorithms; Black-box optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00215-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:77:y:2020:i:2:d:10.1007_s10589-020-00215-w

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-020-00215-w

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:77:y:2020:i:2:d:10.1007_s10589-020-00215-w