Single-forward-step projective splitting: exploiting cocoercivity
Patrick R. Johnstone () and
Jonathan Eckstein ()
Additional contact information
Patrick R. Johnstone: Brookhaven National Laboratory
Jonathan Eckstein: Rutgers University
Computational Optimization and Applications, 2021, vol. 78, issue 1, No 4, 125-166
Abstract:
Abstract This work describes a new variant of projective splitting for solving maximal monotone inclusions and complicated convex optimization problems. In the new version, cocoercive operators can be processed with a single forward step per iteration. In the convex optimization context, cocoercivity is equivalent to Lipschitz differentiability. Prior forward-step versions of projective splitting did not fully exploit cocoercivity and required two forward steps per iteration for such operators. Our new single-forward-step method establishes a symmetry between projective splitting algorithms, the classical forward–backward splitting method (FB), and Tseng’s forward-backward-forward method. The new procedure allows for larger stepsizes for cocoercive operators: the stepsize bound is $$2\beta$$ 2 β for a $$\beta$$ β -cocoercive operator, the same bound as has been established for FB. We show that FB corresponds to an unattainable boundary case of the parameters in the new procedure. Unlike FB, the new method allows for a backtracking procedure when the cocoercivity constant is unknown. Proving convergence of the algorithm requires some departures from the prior proof framework for projective splitting. We close with some computational tests establishing competitive performance for the method.
Keywords: Proximal operator splitting; Projective splitting; Convex nonsmooth optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00238-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:78:y:2021:i:1:d:10.1007_s10589-020-00238-3
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-020-00238-3
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().