Fastest rates for stochastic mirror descent methods
Filip Hanzely () and
Peter Richtárik
Additional contact information
Filip Hanzely: King Abdullah University of Science and Technology (KAUST)
Peter Richtárik: King Abdullah University of Science and Technology (KAUST)
Computational Optimization and Applications, 2021, vol. 79, issue 3, No 7, 717-766
Abstract:
Abstract Relative smoothness—a notion introduced in Birnbaum et al. (Proceedings of the 12th ACM conference on electronic commerce, ACM, pp 127–136, 2011) and recently rediscovered in Bauschke et al. (Math Oper Res 330–348, 2016) and Lu et al. (Relatively-smooth convex optimization by first-order methods, and applications, arXiv:1610.05708 , 2016)—generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD), both generalizing famous algorithms in the standard smooth setting. The methods we propose can be in fact seen as particular instances of stochastic mirror descent algorithms, which has been usually analyzed under stronger assumptions: Lipschitzness of the objective and strong convexity of the reference function. As a consequence, one of the proposed methods, relRCD corresponds to the first stochastic variant of mirror descent algorithm with linear convergence rate.
Keywords: Gradient descent; Relative smoothness; Coordinate descent; Stochastic gradient descent (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-021-00284-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:79:y:2021:i:3:d:10.1007_s10589-021-00284-5
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-021-00284-5
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().