EconPapers    
Economics at your fingertips  
 

Sparse Dirichlet optimal control problems

Mariano Mateos ()
Additional contact information
Mariano Mateos: Universidad de Oviedo

Computational Optimization and Applications, 2021, vol. 80, issue 1, No 10, 300 pages

Abstract: Abstract In this paper, we analyze optimal control problems governed by an elliptic partial differential equation, in which the control acts as the Dirichlet data. Box constraints for the controls are imposed and the cost functional involves the state and possibly a sparsity-promoting term, but not a Tikhonov regularization term. Two different discretizations are investigated: the variational approach and a full discrete approach. For the latter, we use continuous piecewise linear elements to discretize the control space and numerical integration of the sparsity-promoting term. It turns out that the best way to discretize the state equation is to use the Carstensen quasi-interpolant of the boundary data, and a new discrete normal derivative of the adjoint state must be introduced to deal with this. Error estimates, optimization procedures and examples are provided.

Keywords: Optimal control; Boundary control; Sparse controls; Finite element approximation; 49K20; 49M25; 49J52 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10589-021-00290-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:80:y:2021:i:1:d:10.1007_s10589-021-00290-7

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-021-00290-7

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:80:y:2021:i:1:d:10.1007_s10589-021-00290-7