EconPapers    
Economics at your fingertips  
 

Alternating conditional gradient method for convex feasibility problems

R. Díaz Millán (), O. P. Ferreira () and L. F. Prudente ()
Additional contact information
R. Díaz Millán: Deakin University
O. P. Ferreira: Universidade Federal de Goiás
L. F. Prudente: Universidade Federal de Goiás

Computational Optimization and Applications, 2021, vol. 80, issue 1, No 9, 245-269

Abstract: Abstract The classical convex feasibility problem in a finite dimensional Euclidean space consists of finding a point in the intersection of two convex sets. In the present paper we are interested in two particular instances of this problem. First, we assume to know how to compute an exact projection onto one of the sets involved and the other set is compact such that the conditional gradient (CondG) method can be used for computing efficiently an inexact projection on it. Second, we assume that both sets involved are compact such that the CondG method can be used for computing efficiently inexact projections on them. We combine alternating projection method with CondG method to design a new method, which can be seen as an inexact feasible version of alternate projection method. The proposed method generates two different sequences belonging to each involved set, which converge to a point in the intersection of them whenever it is not empty. If the intersection is empty, then the sequences converge to points in the respective sets whose distance between them is equal to the distance between the sets in consideration. Numerical experiments are provided to illustrate the practical behavior of the method.

Keywords: Convex feasibility problem; Alternating projection method; Conditional gradient method; Inexact projections; 65K05; 90C30; 90C25 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-021-00293-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:80:y:2021:i:1:d:10.1007_s10589-021-00293-4

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-021-00293-4

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:80:y:2021:i:1:d:10.1007_s10589-021-00293-4