EconPapers    
Economics at your fingertips  
 

Nonmonotone trust region algorithm for solving the unconstrained multiobjective optimization problems

V. A. Ramirez () and G. N. Sottosanto
Additional contact information
V. A. Ramirez: Universidad Nacional del Comahue
G. N. Sottosanto: Universidad Nacional del Comahue

Computational Optimization and Applications, 2022, vol. 81, issue 3, No 4, 769-788

Abstract: Abstract In this work an iterative method to solve the nonlinear multiobjective problem is presented. The goal is to find locally optimal points for the problem, that is, points that cannot simultaneously improve all functions when we compare the value at the point with those in their neighborhood. The algorithm uses a strategy developed in previous works by several authors but globalization is obtained through a nonmonotone technique. The construction of a new ratio between the actual descent and predicted descent plays a key role for selecting the new point and updating the trust region radius. On the other hand, we introduce a modification in the quadratic model used to determine if the point is accepted or not, which is fundamental for the convergence of the method. The combination of this strategy with a Newton-type method leads to an algorithm whose convergence properties are proved. The numerical experimentation is performed using a known set of test problems. Preliminary numerical results show that the nonmonotone method can be more efficient when it is compared to another algorithm that use the classic trust region approach.

Keywords: Multiobjective optimization; Trust region; Nonmonotone strategy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-021-00346-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:81:y:2022:i:3:d:10.1007_s10589-021-00346-8

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-021-00346-8

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:81:y:2022:i:3:d:10.1007_s10589-021-00346-8