EconPapers    
Economics at your fingertips  
 

An inexact successive quadratic approximation method for a class of difference-of-convex optimization problems

Tianxiang Liu () and Akiko Takeda ()
Additional contact information
Tianxiang Liu: Tokyo Institute of Technology
Akiko Takeda: The University of Tokyo

Computational Optimization and Applications, 2022, vol. 82, issue 1, No 7, 173 pages

Abstract: Abstract In this paper, we propose a new method for a class of difference-of-convex (DC) optimization problems, whose objective is the sum of a smooth function and a possibly non-prox-friendly DC function. The method sequentially solves subproblems constructed from a quadratic approximation of the smooth function and a linear majorization of the concave part of the DC function. We allow the subproblem to be solved inexactly, and propose a new inexact rule to characterize the inexactness of the approximate solution. For several classical algorithms applied to the subproblem, we derive practical termination criteria so as to obtain solutions satisfying the inexact rule. We also present some convergence results for our method, including the global subsequential convergence and a non-asymptotic complexity analysis. Finally, numerical experiments are conducted to illustrate the efficiency of our method.

Keywords: DC programming; Quadratic approximation; Inexact rule; Non-asymptotic complexity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10589-022-00357-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:82:y:2022:i:1:d:10.1007_s10589-022-00357-z

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-022-00357-z

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:82:y:2022:i:1:d:10.1007_s10589-022-00357-z