Economics at your fingertips  

Computable centering methods for spiraling algorithms and their duals, with motivations from the theory of Lyapunov functions

Scott B. Lindstrom ()
Additional contact information
Scott B. Lindstrom: Curtin University

Computational Optimization and Applications, 2022, vol. 83, issue 3, No 9, 999-1026

Abstract: Abstract For many problems, some of which are reviewed in the paper, popular algorithms like Douglas–Rachford (DR), ADMM, and FISTA produce approximating sequences that show signs of spiraling toward the solution. We present a meta-algorithm that exploits such dynamics to potentially enhance performance. The strategy of this meta-algorithm is to iteratively build and minimize surrogates for the Lyapunov function that captures those dynamics. As a first motivating application, we show that for prototypical feasibility problems the circumcentered-reflection method, subgradient projections, and Newton–Raphson are all describable as gradient-based methods for minimizing Lyapunov functions constructed for DR operators, with the former returning the minimizers of spherical surrogates for the Lyapunov function. As a second motivating application, we introduce a new method that shares these properties but with the added advantages that it: (1) does not rely on subproblems (e.g. reflections) and so may be applied for any operator whose iterates have the spiraling property; (2) provably has the aforementioned Lyapunov properties with few structural assumptions and so is generically suitable for primal/dual implementation; and (3) maps spaces of reduced dimension into themselves whenever the original operator does. This makes possible the first primal/dual implementation of a method that seeks the center of spiraling iterates. We describe this method, and provide a computed example (basis pursuit).

Keywords: ADMM; Douglas–Rachford; Projection methods; Reflection methods; Iterative methods; Discrete dynamical systems; Lyapunov functions; Primal/dual; Circumcenter; Circumcentered-reflection method; 90C26; 65Q30; 47H99; 49M30 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1007/s10589-022-00413-8

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

Page updated 2022-12-31
Handle: RePEc:spr:coopap:v:83:y:2022:i:3:d:10.1007_s10589-022-00413-8