An alternative extrapolation scheme of PDHGM for saddle point problem with nonlinear function
Ying Gao and
Wenxing Zhang ()
Additional contact information
Ying Gao: University of Electronic Science and Technology of China
Wenxing Zhang: University of Electronic Science and Technology of China
Computational Optimization and Applications, 2023, vol. 85, issue 1, No 9, 263-291
Abstract:
Abstract Primal-dual hybrid gradient (PDHG) method is a canonical and popular prototype for solving saddle point problem (SPP). However, the nonlinear coupling term in SPP excludes the application of PDHG on far-reaching real-world problems. In this paper, following the seminal work by Valkonen (Inverse Problems 30, 2014), we devise a variant iterative scheme for solving SPP with nonlinear function by exerting an alternative extrapolation procedure. The novel iterative scheme falls exactly into the proximal point algorithmic framework without any residuals, which indicates that the associated inclusion problem is “nearer” to the KKT mapping induced by SPP. Under the metrically regular assumption on KKT mapping, we simplify the local convergence of the proposed method on contractive perspective. Numerical simulations on a PDE-constrained nonlinear inverse problem demonstrate the compelling performance of the proposed method.
Keywords: Primal-dual hybrid gradient (modified); Proximal point algorithm; Monotone inclusion; Extrapolation; Linearization; Metric regularity; Contraction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10589-023-00453-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:85:y:2023:i:1:d:10.1007_s10589-023-00453-8
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-023-00453-8
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().