GLISp-r: a preference-based optimization algorithm with convergence guarantees
Davide Previtali (),
Mirko Mazzoleni (),
Antonio Ferramosca () and
Fabio Previdi ()
Additional contact information
Davide Previtali: University of Bergamo
Mirko Mazzoleni: University of Bergamo
Antonio Ferramosca: University of Bergamo
Fabio Previdi: University of Bergamo
Computational Optimization and Applications, 2023, vol. 86, issue 1, No 11, 383-420
Abstract:
Abstract Preference-based optimization algorithms are iterative procedures that seek the optimal calibration of a decision vector based only on comparisons between couples of different tunings. At each iteration, a human decision-maker expresses a preference between two calibrations (samples), highlighting which one, if any, is better than the other. The optimization procedure must use the observed preferences to find the tuning of the decision vector that is most preferred by the decision-maker, while also minimizing the number of comparisons. In this work, we formulate the preference-based optimization problem from a utility theory perspective. Then, we propose GLISp-r, an extension of a recent preference-based optimization procedure called GLISp. The latter uses a Radial Basis Function surrogate to describe the tastes of the decision-maker. Iteratively, GLISp proposes new samples to compare with the best calibration available by trading off exploitation of the surrogate model and exploration of the decision space. In GLISp-r, we propose a different criterion to use when looking for new candidate samples that is inspired by MSRS, a popular procedure in the black-box optimization framework. Compared to GLISp, GLISp-r is less likely to get stuck on local optima of the preference-based optimization problem. We motivate this claim theoretically, with a proof of global convergence, and empirically, by comparing the performances of GLISp and GLISp-r on several benchmark optimization problems.
Keywords: Global optimization; Preference-based optimization; Surrogate-based methods; Active preference learning; Utility theory (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-023-00491-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:86:y:2023:i:1:d:10.1007_s10589-023-00491-2
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-023-00491-2
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().