SCORE: approximating curvature information under self-concordant regularization
Adeyemi D. Adeoye () and
Alberto Bemporad ()
Additional contact information
Adeyemi D. Adeoye: IMT School for Advanced Studies
Alberto Bemporad: IMT School for Advanced Studies
Computational Optimization and Applications, 2023, vol. 86, issue 2, No 6, 599-626
Abstract:
Abstract Optimization problems that include regularization functions in their objectives are regularly solved in many applications. When one seeks second-order methods for such problems, it may be desirable to exploit specific properties of some of these regularization functions when accounting for curvature information in the solution steps to speed up convergence. In this paper, we propose the SCORE (self-concordant regularization) framework for unconstrained minimization problems which incorporates second-order information in the Newton-decrement framework for convex optimization. We propose the generalized Gauss–Newton with Self-Concordant Regularization (GGN-SCORE) algorithm that updates the minimization variables each time it receives a new input batch. The proposed algorithm exploits the structure of the second-order information in the Hessian matrix, thereby reducing computational overhead. GGN-SCORE demonstrates how to speed up convergence while also improving model generalization for problems that involve regularized minimization under the proposed SCORE framework. Numerical experiments show the efficiency of our method and its fast convergence, which compare favorably against baseline first-order and quasi-Newton methods. Additional experiments involving non-convex (overparameterized) neural network training problems show that the proposed method is promising for non-convex optimization.
Keywords: Self-concordant functions; Gauss–Newton methods; Convex optimization; Overparameterized models (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-023-00502-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:86:y:2023:i:2:d:10.1007_s10589-023-00502-2
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-023-00502-2
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().